z-logo
Premium
PHOTOINHIBITION OF MECHANICALLY STIMULABLE BIOLUMINESCENCE IN THE HETEROTROPHIC DINOFLAGELLATE PROTOPERIDINIUM DEPRESSUM (PYRROPHYTA) 1
Author(s) -
Li Yaqin,
Swift Elijah,
Buskey Edward J.
Publication year - 1996
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.0022-3646.1996.00974.x
Subject(s) - photoinhibition , dinoflagellate , biology , botany , chlorophyll a , heterotroph , photosynthesis , fucoxanthin , action spectrum , chlorophyll , pigment , algae , photosystem ii , chemistry , genetics , bacteria , organic chemistry
Photoinhibition of mechanically stimulable bioluminescence (MSL) in the heterotrophic dinoflagellate Protoperidinium depressum Bailey was investigated using samples collected from the Massachusetts and southern Texas coasts. The times for both photoinhibition of MSL (ca. 10 min) and dark recovery from photoinhibition of MSL (ca. 45 min) in this species were similar to those reported for autotrophic dinoflagellates. The degree of photoinhibition of MSL was a linear function of the logarithm of photon flux density (PFD). The threshold PFDs for the photoinhibition of MSL were 0.02, 0.6, and 21 μmol photons · m −2 · s −1 for broad‐band blue, green, and red light, respectively. These PFDs are lower than those required for photoinhibition of MSL by the autotrophic dinoflagellates Pyrocystis lunula and Ceratium fusus. We speculate that photosynthetic pigments in autotrophic dinoflagellates shield the photoreceptor that causes photoinhibition of MSL, thus lowering the sensitivity of these dinoflagellates to light. When field‐collected P. depressum were kept in the laboratory without growth for a week, photoinhibition of MSL's sensitivity to light increased progressively along with 1) a decrease in its bioluminescence capacity (BCAP), 2) a decrease in the ratio of MSL to BCAP (MSL/BCAP), and 3) a decrease in the orange pigmentation (probably carotenoid) of the dinoflagellate. The action spectrum for photoinhibition of MSL in P. depressum was characterized primarily with a broad peak in the blue extending into the green. We suggest that carotenoid was not a photoreceptor for the photoinhibition of MSL in P. depressum because the peak of the action spectrum was too broad and extended too far into the green part of the spectrum, and because the orange pigment present decreased as photoinhibition of MSL became more sensitive to light.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here