Premium
ACTIVE GLIDING MOTILITY IN AN ARAPHID MARINE DIATOM, ARDISSONEA (FORMERLY SYNEDRA ) CRYSTALLINA 1
Author(s) -
PickettHeaps Jeremy,
Hill David R. A.,
Blaze Kevin L.
Publication year - 1991
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.0022-3646.1991.00718.x
Subject(s) - mucilage , biology , secretion , diatom , cytoplasmic streaming , motility , microbiology and biotechnology , biophysics , stipe (mycology) , cytoplasm , botany , biochemistry
Active gliding movement over long distances was observed and filmed in the marine pennate diatom Ardissonea (Synedra) crystallina (Agardh) Kütz. Typical speeds measured ca. 1–2 μm‐s −1 . Motion wax often smooth and steady; however, discontinuous jerky motions and rolling movements were common. Motion, was associated with secretion of twin or, less commonly, single straight trails of mucilage from one end of the cell. In a few instances, reversal in direction was related to cessation of mucilage secretion at one end and commencement at the other. Temporary cessation of movement due to an obstruction was accompanied by a build‐up of mucilage at one end of the cell. Mucilage was apparently secreted at two specific sites at each end of the cell and was stained by alcian blue. Persistent trails were visible under scanning electron microscopy (SEM). SEM confirmed that cells had no raphes or labiate processes. The apparent site of secretion was a deep groove formed at the junction of the valve and valvocopula (first girdle band) at each end of the cell. Transmission electron microscopy confirmed the presence of mucilage vesicles in the cytoplasm, but these were not in any manner obviously related to secretion nor was any morphological structure associated with secretion. Cells often become epiphytic through secretion of a terminal stipe. Both stipe secretion and movement may involve the same structural differentiation of the frustule. These results demonstrate a previously unrecorded type of diatom motility. The mechanism, involves mucilage secretion and appears similar to that seen, for example, in some other algae such as the desmids (green algae).