z-logo
Premium
CHARACTERIZATION AND BIOLOGICAL IMPLICATIONS OF SCYTONEMIN, A CYANOBACTERIAL SHEATH PIGMENT 1
Author(s) -
GarciaPichel Ferran,
Castenholz Richard W.
Publication year - 1991
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.0022-3646.1991.00395.x
Subject(s) - biology , cyanobacteria , botany , phycocyanin , photoprotection , phycobiliprotein , photosynthesis , pigment , biophysics , chemistry , genetics , organic chemistry , bacteria
Scytonemin, the yellow‐brown pigment of cyanobacterial (blue‐green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near‐ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near‐ultraviolet‐blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m −2 · S −1 , depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV‐A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short‐wavelength solar irradiance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here