Premium
FREEZE‐FRACTURE STUDY OF THE SINGLE MEMBRANE BETWEEN HOST CELL AND ENDOCYTOBIONT IN THE DINOFLAGELLATES GLENODINIUM FOLIACEUM AND PERIDINIUM BALTICUM 1
Author(s) -
Eschbach Stefan,
Speth Volker,
Hansmann Paul,
Sitte Peter
Publication year - 1990
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/j.0022-3646.1990.00324.x
Subject(s) - biology , membrane , biophysics , vacuole , plastid , polarity (international relations) , microbiology and biotechnology , biochemistry , cell , chloroplast , cytoplasm , gene
The dinoflagellates Glenodinium foliaceum Stein and Peridinium balticum (Levander) Lemmermann harbor a chrysophytic endocytobiont which is bounded by only a single membrane. This unique membrane is of particular interest because it could correspond to an intermediate stage in the evolution of “complex” plastids found in many Plastids of this type are surrounded by three or membranes instead of the usual two. With freeze‐fracture techniques, we show that the single membrane in P. balticum has a pronounced polarity with respect to the distribution of intramembrane particles (IMPs) on the two corresponding fracture faces. The inner face exhibited more IMPs than the outer. We suggest that this stdedness identifies the separating membrane as the plasma membrane of the endocytobiont. A symbiontophoric vacuole with a separate membrane apparently is lacking. In the endocytobiosis of G. foliaccum, the single membrane separating host and endocylobiont exhibits a symmetrical particle partition. Nevertheless, from the size distribution of the IMPs it appears likely that this membrane, too, corresponds to the plasma membrane of the symbiont.