z-logo
Premium
Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing
Author(s) -
GU Y.,
DI W. L.,
KELSELL D. P.,
ZICHA D.
Publication year - 2004
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/j.0022-2720.2004.01365.x
Subject(s) - förster resonance energy transfer , photobleaching , fluorescence , acceptor , energy transfer , resonance fluorescence , chemistry , nuclear magnetic resonance , photochemistry , optics , chemical physics , physics , condensed matter physics
Summary Fluorescence resonance energy transfer (FRET) by acceptor photobleaching is a simple but effective tool for measurements of protein–protein interactions. Until recently, it has been restricted to qualitative or relative assessments owing to the spectral bleed‐through contamination resulting from fluorescence overlap between the donor and the acceptor. In this paper, we report a quantitative algorithm that combines the spectral unmixing technique with FRET by acceptor photobleaching. By spectrally unmixing the emissions before and after photobleaching, it is possible to resolve the spectral bleed‐through and retrieve the FRET efficiency/interaction distance quantitatively. Using a human keratinocyte cell line transfected with cyan fluorescent protein (CFP)‐ and yellow fluorescent protein (YFP)‐tagged Cx26 connexins as an example, FRET information at homotypic gap junctions is measured and compared with well‐established methods. Results indicate that the new approach is sensitive, flexible, instrument independent and solely FRET dependent. It can achieve FRET estimations similar to that from a sensitized emission FRET method. This approach has a great advantage in providing the relative concentrations of the donor and the acceptor; this is, for example, very important in the comparative study of cell populations with variable expression levels.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here