z-logo
Premium
Limit Cycle‐Strange Attractor Competition
Author(s) -
Criminale W. O.,
Jackson T. L.,
Nelson P. W.
Publication year - 2004
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/j.0022-2526.2004.01507.x
Subject(s) - van der pol oscillator , limit cycle , attractor , coupling (piping) , physics , forcing (mathematics) , duffing equation , limit (mathematics) , nonlinear system , classical mechanics , mathematics , mathematical analysis , quantum mechanics , mechanical engineering , atmospheric sciences , engineering
To understand the competition between what are known as limit cycle and strange attractor dynamics, the classical oscillators that display such features were coupled and studied with and without external forcing. Numerical simulations show that, when the Duffing equation (the strange attractor prototype) forces the van der Pol oscillator (the limit cycle prototype), the limit cycle is destroyed. However, when the van der Pol oscillator is coupled to the Duffing equation as linear forcing, the two traditionally stable steady states are destabilized and a quasi‐periodic orbit is born. In turn, this limit cycle is eventually destroyed because the coupling strength is increased and eventually gives way to strange attractor or chaotic dynamics. When two van der Pol oscillators are coupled in the absence of external periodic forcing, the system approaches a stable, nonzero steady state when the coupling strengths are both unity; trajectories approach a limit cycle if coupling strengths are equal and less than 1. Solutions grow unbounded if the coupling strengths are equal and greater than 1. Quasi‐periodic solutions give way to chaos as the coupling strength increases and one oscillator is strongly coupled to the other. Finally, increasing the nonlinearity in both the oscillators is stabilizing whereas increasing the nonlinearity in a single oscillator results in subcritical instability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here