z-logo
Premium
Structure of the inner ear of bluefin tuna Thunnus thynnus
Author(s) -
Song J.,
Mathieu A.,
Soper R. F.,
Popper A. N.
Publication year - 2006
Publication title -
journal of fish biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 115
eISSN - 1095-8649
pISSN - 0022-1112
DOI - 10.1111/j.0022-1112.2006.01057.x
Subject(s) - biology , thunnus , anatomy , utricle , inner ear , tuna , saccule , otolith , connective tissue , hair cell , fishery , fish <actinopterygii> , genetics
The ears of five large bluefin tuna Thunnus thynnus were examined by light and scanning electron microscopy (SEM). The gross structure of the ear is similar to that in other fishes. The ears, however, appear to be held more rigidly in place than in other species through the presence of an extensive connective tissue between the membranous ear and the surrounding bone. Moreover, unlike other fishes, the semicircular canals and otolithic end organs have thick cartilaginous walls and there is a dense matrix surrounding the otoliths rather than a more watery fluid found in other species. SEM revealed that the saccular epithelium has a ‘standard’ hair cell orientation pattern. The hair cell orientation patterns in the lagena and utricle resemble those found in most other fishes. Ciliary bundle density and length vary in different epithelial regions and each ear had >2 × 10 6 sensory cells. The morphological results support the hypothesis that bluefin tuna probably do not detect sounds to much over 1000 Hz (if that high) and that only very loud anthropogenic sounds have the potential to affect hearing in this species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here