Premium
GENETIC DIVERSITY AND DISEASE RESISTANCE IN LEAF‐CUTTING ANT SOCIETIES
Author(s) -
Hughes William O. H.,
Boomsma Jacobus J.
Publication year - 2004
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.0014-3820.2004.tb01704.x
Subject(s) - biology , parasite hosting , genetic diversity , resistance (ecology) , mating , generalist and specialist species , genetic variation , zoology , evolutionary biology , virulence , ant , ecology , genetics , gene , demography , population , habitat , sociology , world wide web , computer science
Multiple mating by females (polyandry) remains hard to explain because, while it has substantial costs, clear benefits have remained elusive. The problem is acute in the social insects because polyandry is probably particularly costly for females and most material benefits of the behavior are unlikely to apply. It has been suggested that a fitness benefit may arise from the more genetically diverse worker force that a polyandrous queen will produce. One leading hypothesis is that the increased genetic diversity of workers will improve a colony's resistance to disease. We investigated this hypothesis using a polyandrous leaf‐cutting ant and a virulent fungal parasite as our model system. At high doses of the parasite most patrilines within colonies were similarly susceptible, but a few showed greater resistance. At a low dose of the parasite there was more variation between patrilines in their resistance to the parasite. Such genetic variation is a key prerequisite for polyandry to result in increased disease resistance of colonies. The relatedness of two hosts did not appear to affect the transmission of the parasite between them, but this was most likely because the parasite tested was a virulent generalist that is adapted to transmit between distantly related hosts. The resistance to the parasite was compared between small groups of ants of either high or low genetic diversity. No difference was found at high doses of the parasite, but a significant improvement in resistance in high genetic diversity groups was found at a low dose of the parasite. That there is genetic variation for disease resistance means that there is the potential for polyandry to produce more disease‐resistant colonies. That this genetic variation can improve the resistance of groups even under the limited conditions tested suggests that polyandry may indeed produce colonies with improved resistance to disease.