z-logo
Premium
SELECTION AND DISPERSAL IN A MULTISPECIES OAK HYBRID ZONE
Author(s) -
Dodd Richard S.,
AfzalRafii Zara
Publication year - 2004
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.0014-3820.2004.tb01643.x
Subject(s) - biology , introgression , biological dispersal , gene flow , genetic structure , sympatry , interspecific competition , ecology , isolation by distance , population , hybrid zone , reproductive isolation , pollen , hybrid , habitat , zoology , botany , genetic variation , genetics , gene , demography , sociology
The four western North American red oak species ( Quercus wislizeni , Q. parvula , Q. agrifolia , and Q. kelloggii ) are known to produce hybrid products in all interspecific combinations. However, it is unknown whether hybrids are transitory resulting from interspecific gene flow or whether they are maintained through extrinsic selection. Here, we examine cryptic hybrid structure in Q. wislizeni through a broad region including contact and isolation from three other western North American red oaks using amplified fragment length polymorphism molecular markers. All four species were simultaneously detected in the genetic background of individuals morphologically assigned to Q. wislizeni , although the contribution of Q. kelloggii was minor. In some cases, introgression was detected well outside the region of sympatry with one of the parental species. Molecular structure at the individual level indicated this was due to long‐distance pollen dispersal and not to local extinction of parental species. Species admixture proportions were correlated with climatic variables and greater proportions of Q. agrifolia and Q. parvula were present in the genetic background of Q. wislizeni in sites with cooler and more humid summers, corresponding with habitat preferences of the parental species. Partial Mantel tests indicated that climate was more important than distance from pollen source in this association. Despite high levels of introgression, species integrity was maintained in some populations in close proximity to the other species, providing further support to environmental selection in determining population genetic structure. Thus, the contribution of species mixtures to population genetic structure varies across the landscape according to availability of pollen, but more importantly to varying environmental selection pressures that produce a complex pattern of hybrid and pure gene pools.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here