Premium
POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA
Author(s) -
Cano José Manuel,
Laurila Anssi,
Palo Jukka,
Merilä Juha
Publication year - 2004
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.0014-3820.2004.tb00486.x
Subject(s) - biology , selection (genetic algorithm) , natural selection , intraspecific competition , evolutionary biology , population , trait , divergence (linguistics) , zoology , ecology , statistics , mathematics , demography , artificial intelligence , linguistics , philosophy , sociology , computer science , programming language
The additive genetic variance‐covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common‐garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G‐matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using Q ST indices with that observed in microsatellite markers (F ST ) revealed that the former values generally exceeded the neutral expectation set by F ST . Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.