z-logo
Premium
EPISTASIS AND THE TEMPORAL CHANGE IN THE ADDITIVE VARIANCE‐COVARIANCE MATRIX INDUCED BY DRIFT
Author(s) -
LópezFanjul Carlos,
Fernández Almudena,
Toro Miguel A.
Publication year - 2004
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.0014-3820.2004.tb00451.x
Subject(s) - epistasis , inbreeding , biology , covariance , population , additive model , locus (genetics) , allele , genetics , allele frequency , statistics , evolutionary biology , mathematics , gene , demography , sociology
The effect of population bottlenecks on the components of the genetic covariance generated by two neutral independent epistatic loci has been studied theoretically (additive, cov A ; dominance, cov D ; additive‐by‐additive, cov AA ; additive‐by‐dominance, cov AD ; and dominance‐by‐dominance, cov DD ). The additive‐by‐additive model and a more general model covering all possible types of marginal gene action at the single‐locus level (additive/dominance epistatic model) were considered. The covariance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium over replicates randomly derived from the base population, after t consecutive bottlenecks of equal size N (derived components). Formulae were obtained in terms of the allele frequencies and effects at each locus, the corresponding epistatic effects and the inbreeding coefficient F t . These expressions show that the contribution of nonadditive loci to the derived additive covariance (cov At ) does not linearly decrease with inbreeding, as in the pure additive case, and may initially increase or even change sign in specific situations. Numerical examples were also analyzed, restricted for simplicity to the case of all covariance components being positive. For additive‐by‐additive epistasis, the condition cov At > cov A only holds for high frequencies of the allele decreasing the metric traits at each locus (negative allele) if epistasis is weak, or for intermediate allele frequencies if it is strong. For the additive/dominance epistatic model, however, cov At > cov A applies for low frequencies of the negative alleles at one or both loci and mild epistasis, but this result can be progressively extended to intermediate frequencies as epistasis becomes stronger. Without epistasis the same qualitative results were found, indicating that marginal dominance induced by epistasis can be considered as the primary cause of an increase of the additive covariance after bottlenecks. For all models, the magnitude of the ratio cov At /cov A was inversely related to N and t.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here