z-logo
Premium
REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE
Author(s) -
Post Eric,
Levin Simon A.,
Iwasa Yoh,
Stenseth Nils C.
Publication year - 2001
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.0014-3820.2001.tb00818.x
Subject(s) - biology , asynchrony (computer programming) , asynchronous communication , ecology , density dependence , reproduction , population , competition (biology) , perturbation (astronomy) , reproductive success , disturbance (geology) , demography , computer science , computer network , paleontology , physics , quantum mechanics , sociology
While it is widely recognized that the manner in which organisms adjust their timing of reproduction reflects evolutionary strategies aimed at minimizing offspring mortality or maximizing reproductive output, the conditions under which the evolutionarily stable strategy involves synchronous or asynchronous reproduction is a matter of considerable discord. A recent theoretical model predicts that whether a population displays reproductive synchrony or asynchrony will depend on the relative scales of intrinsic regulation and environmental disturbance experienced by reproducing individuals. This model predicts that, under conditions of negligible competition and large‐scale environmental perturbation, evolution of a single mixed strategy will result in asynchronous reproduction. We tested this prediction using empirical data on large‐scale climatic fluctuation and the annual timing of reproduction by three species of flowering plants covering 1300‐population‐years and four degrees of latitude in Norway. In agreement with model predictions, within populations of all three species reproductive asynchrony increased with the magnitude of large‐scale climatic perturbation, but bore no relation to the strength of local density dependence. These results suggest that mixed evolutionarily stable strategies can arise from the interplay of combinations of agents of selection and the scale at which they operate; hence it is fruitless to associate synchronous versus asynchronous timing with particular single factors like climate, competition, or predation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here