Premium
A Nonparametric Bayesian Modeling Approach for Cytogenetic Dosimetry
Author(s) -
Kottas Athanasios,
Branco Márcia D.,
Gelfand Alan E.
Publication year - 2002
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.0006-341x.2002.00593.x
Subject(s) - categorical variable , nonparametric statistics , parametric statistics , bayesian probability , dosimetry , parametric model , inference , computer science , poisson distribution , bayesian inference , statistics , mathematics , artificial intelligence , machine learning , medicine , nuclear medicine
Summary. In cytogenetic dosimetry, samples of cell cultures are exposed to a range of doses of a given agent. In each sample at each dose level, some measure of cell disability is recorded. The objective is to develop models that explain cell response to dose. Such models can be used to predict response at unobserved doses. More important, such models can provide inference for unknown exposure doses given the observed responses. Typically, cell disability is viewed as a Poisson count, but in the present work, a more appropriate response is a categorical classification. In the literature, modeling in this case is very limited. What exists is purely parametric. We propose a fully Bayesian nonparametric approach to this problem. We offer comparison with a parametric model through a simulation study and the analysis of a real dataset modeling blood cultures exposed to radiation where classification is with regard to number of micronuclei per cell.