z-logo
Premium
A Two‐Sample Comparison for Multiple Ordered Event Data
Author(s) -
Chang ShuHui
Publication year - 2000
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.0006-341x.2000.00183.x
Subject(s) - censoring (clinical trials) , estimator , mathematics , statistics , counting process , survival analysis , covariate , econometrics
Summary. A longitudinal study is conducted to compare the process of a particular disease between two groups. The process of the disease is monitored according to which of several ordered events occur. In the paper, the sojourn time between two successive events is considered as the outcome of interest. The group effects on the sojourn times of the multiple events are parameterized by scale changes in a semiparametric accelerated failure time model where the dependence structure among the multivariate sojourn times is unspecified. Suppose that the sojourn times are subject to dependent censoring and the censoring times are observed for all subjects. A log‐rank‐type estimating approach by rescaling the sojourn times and the dependent censoring times into the same distribution is constructed to estimate the group effects and the corresponding estimators are consistent and asymptotically normal. Without the dependent censoring, the independent censoring times in general are not available for the uncensored data. In order to complete the censoring information, pseudo‐censoring times are generated from the corresponding nonparametrically estimated survival function in each group, and we can still obtained unbiased estimating functions for the group effects. A real application and a simulation study are conducted to illustrate the proposed methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here