z-logo
Premium
Likelihood Methods for Incomplete Longitudinal Binary Responses with Incomplete Categorical Covariates
Author(s) -
Lipsitz Stuart R.,
Ibrahim Joseph G.,
Fitzmaurice Garrett M.
Publication year - 1999
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.0006-341x.1999.00214.x
Subject(s) - covariate , categorical variable , missing data , statistics , multinomial distribution , mathematics , nuisance parameter , econometrics , binary data , binary number , estimator , arithmetic
Summary. We consider longitudinal studies in which the outcome observed over time is binary and the covariates of interest are categorical. With no missing responses or covariates, one specifies a multinomial model for the responses given the covariates and uses maximum likelihood to estimate the parameters. Unfortunately, incomplete data in the responses and covariates are a common occurrence in longitudinal studies. Here we assume the missing data are missing at random (Rubin, 1976, Biometrika 63 , 581–592). Since all of the missing data (responses and covariates) are categorical, a useful technique for obtaining maximum likelihood parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85 , 765–769). In using the EM algorithm with missing responses and covariates, one specifies the joint distribution of the responses and covariates. Here we consider the parameters of the covariate distribution as a nuisance. In data sets where the percentage of missing data is high, the estimates of the nuisance parameters can lead to highly unstable estimates of the parameters of interest. We propose a conditional model for the covariate distribution that has several modeling advantages for the EM algorithm and provides a reduction in the number of nuisance parameters, thus providing more stable estimates in finite samples.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here