
Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process
Author(s) -
Dunnill Christopher,
Patton Thomas,
Brennan James,
Barrett John,
Dryden Matthew,
Cooke Jonathan,
Leaper David,
Georgopoulos Nikolaos T
Publication year - 2017
Publication title -
international wound journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.867
H-Index - 63
eISSN - 1742-481X
pISSN - 1742-4801
DOI - 10.1111/iwj.12557
Subject(s) - wound healing , reactive oxygen species , medicine , angiogenesis , microbiology and biotechnology , immunology , cancer research , biology
Reactive oxygen species ( ROS ) play a pivotal role in the orchestration of the normal wound‐healing response. They act as secondary messengers to many immunocytes and non‐lymphoid cells, which are involved in the repair process, and appear to be important in coordinating the recruitment of lymphoid cells to the wound site and effective tissue repair. ROS also possess the ability to regulate the formation of blood vessels (angiogenesis) at the wound site and the optimal perfusion of blood into the wound‐healing area. ROS act in the host's defence through phagocytes that induce an ROS burst onto the pathogens present in wounds, leading to their destruction, and during this period, excess ROS leakage into the surrounding environment has further bacteriostatic effects. In light of these important roles of ROS in wound healing and the continued quest for therapeutic strategies to treat wounds in general and chronic wounds, such as diabetic foot ulcers, venous and arterial leg ulcers and pressure ulcers in particular, the manipulation of ROS represents a promising avenue for improving wound‐healing responses when they are stalled. This article presents a review of the evidence supporting the critical role of ROS in wound healing and infection control at the wound site, and some of the new emerging concepts associated with ROS modulation and its potential in improving wound healing are discussed.