z-logo
Premium
Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures
Author(s) -
Castelletti Federico
Publication year - 2020
Publication title -
international statistical review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.051
H-Index - 54
eISSN - 1751-5823
pISSN - 0306-7734
DOI - 10.1111/insr.12379
Subject(s) - directed acyclic graph , graphical model , markov chain monte carlo , model selection , moral graph , computer science , conditional independence , graph , markov chain , bayesian probability , theoretical computer science , mathematics , gaussian , algorithm , machine learning , artificial intelligence , voltage graph , line graph , physics , quantum mechanics
Summary During the last years, graphical models have become a popular tool to represent dependencies among variables in many scientific areas. Typically, the objective is to discover dependence relationships that can be represented through a directed acyclic graph (DAG). The set of all conditional independencies encoded by a DAG determines its Markov property. In general, DAGs encoding the same conditional independencies are not distinguishable from observational data and can be collected into equivalence classes, each one represented by a chain graph called essential graph (EG). However, both the DAG and EG space grow super exponentially in the number of variables, and so, graph structural learning requires the adoption of Markov chain Monte Carlo (MCMC) techniques. In this paper, we review some recent results on Bayesian model selection of Gaussian DAG models under a unified framework. These results are based on closed‐form expressions for the marginal likelihood of a DAG and EG structure, which is obtained from a few suitable assumptions on the prior for model parameters. We then introduce a general MCMC scheme that can be adopted both for model selection of DAGs and EGs together with a couple of applications on real data sets.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here