z-logo
Premium
Analysis of Categorical Data for Complex Surveys
Author(s) -
Skinner Chris
Publication year - 2019
Publication title -
international statistical review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.051
H-Index - 54
eISSN - 1751-5823
pISSN - 0306-7734
DOI - 10.1111/insr.12285
Subject(s) - categorical variable , contingency table , statistics , computer science , inference , data mining , variance (accounting) , sampling (signal processing) , econometrics , mathematics , artificial intelligence , accounting , filter (signal processing) , business , computer vision
Summary This paper reviews methods for handling complex sampling schemes when analysing categorical survey data. It is generally assumed that the complex sampling scheme does not affect the specification of the parameters of interest, only the methodology for making inference about these parameters. The organisation of the paper is loosely chronological. Contingency table data are emphasised first before moving on to the analysis of unit‐level data. Weighted least squares methods, introduced in the mid 1970s along with methods for two‐way tables, receive early attention. They are followed by more general methods based on maximum likelihood, particularly pseudo maximum likelihood estimation. Point estimation methods typically involve the use of survey weights in some way. Variance estimation methods are described in broad terms. There is a particular emphasis on methods of testing. The main modelling methods considered are log‐linear models, logit models, generalised linear models and latent variable models. There is no coverage of multilevel models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here