Premium
Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori
Author(s) -
Yang P.J.,
Zhan M.Y.,
Ye C.,
Yu X.Q.,
Rao X.J.
Publication year - 2017
Publication title -
insect molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 93
eISSN - 1365-2583
pISSN - 0962-1075
DOI - 10.1111/imb.12330
Subject(s) - peptidoglycan , prophenoloxidase , biology , pattern recognition receptor , bombyx mori , innate immune system , bacterial cell structure , biochemistry , microbiology and biotechnology , bacteria , cell wall , receptor , gene , genetics
Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern‐recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N‐acetylmuramoyl‐L‐alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP‐S4 , a short‐form PGRP from the domesticated silkworm, Bombyx mori . The PGRP‐S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP‐S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP‐S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn 2+ . Scanning electron microscopy showed that PGRP‐S4 disrupted the bacterial cell surface. PGRP‐S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP‐S4 has multiple functions in immunity.