Premium
Primary red cell hydration disorders: Pathogenesis and diagnosis
Author(s) -
Caulier A.,
RapettiMauss R.,
Guizouarn H.,
Picard V.,
Garçon L.,
Badens C.
Publication year - 2018
Publication title -
international journal of laboratory hematology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.705
H-Index - 55
eISSN - 1751-553X
pISSN - 1751-5521
DOI - 10.1111/ijlh.12820
Subject(s) - intracellular , red blood cell , homeostasis , red cell , transporter , chemistry , ion transporter , biophysics , anemia , biochemistry , microbiology and biotechnology , gene , biology , medicine , membrane
Hydration status is critical for erythrocyte survival and is mainly determined by intracellular cation content. Active pumps, passive transporters, and ion channels are the key components of volume homeostasis, whereas water passively fits ionic movements. Whenever cation content increases, erythrocyte swells, whereas it shrinks when cation content decreases. Thus, inappropriate cation leak causes erythrocyte hydration disorders, hemolytic anemia, and characteristic red cell shape abnormalities named stomatocytosis. All types of stomatocytosis either overhydrated or dehydrated are linked to inherited or de novo mutations in genes encoding ion transporters or channels. Although intracellular ion content can be assessed by experimental methods, laboratory diagnosis is guided by a combination of red blood cell parameters and deformability measurement when possible, and confirmed by sequencing of the putative genes. A better knowledge of the mechanisms underlying erythrocyte hydration imbalance will further lead to therapeutic improvements.