Premium
Effect of dextran glycation on nanofibril assembly of soya β‐conglycinin at pH 2.0 and the pH stability of nanofibrils
Author(s) -
Zou Yuan,
Chen Yanqiong,
Wang Mengping,
Wang Jinmei,
Yang Xiaoquan
Publication year - 2016
Publication title -
international journal of food science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.831
H-Index - 96
eISSN - 1365-2621
pISSN - 0950-5423
DOI - 10.1111/ijfs.13212
Subject(s) - conjugate , chemistry , glycation , dextran , hydrolysis , steric effects , chemical engineering , biophysics , chromatography , biochemistry , organic chemistry , mathematical analysis , receptor , mathematics , engineering , biology
Summary In this study, we investigated the effects of dextran glycation on soya β‐conglycinin self‐assembly into nanofibrils at 85 °C and pH 2.0, as well as their stability at pH 2.0–10.0. Although the hydrolysis rate of β‐conglycinin decreased, glycation significantly increased the structural change rate in the initial stage of nanofibril formation and the growth of nanofibril. It is suggested that the glycation of three subunits (α′, α, β) in β‐conglycinin may promote fibril assembly because the extension regions of α′ and α subunits play an important role in affecting the rate of structural changes in fibril formation. At neutral pH , conjugate nanofibrils are highly dispersible and transparent and remained greater structural stability compared with mixture. The improvement stability of conjugate nanofibrils may be contributed to dextran which provides some steric hindrance to prevent the aggregation of nanofibrils; this would also facilitate the application of soya β‐conglycinin nanofibrils in food industry.