Premium
Microwave vs conventional porcelain firing: Macroscopic properties
Author(s) -
Santos Tiago,
Hennetier Luc,
Costa Vítor A. F.,
Costa Luis C.
Publication year - 2020
Publication title -
international journal of applied ceramic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 57
eISSN - 1744-7402
pISSN - 1546-542X
DOI - 10.1111/ijac.13569
Subject(s) - materials science , microwave , eutectic system , porosity , composite material , microwave heating , shrinkage , microstructure , telecommunications , computer science
This paper provides an overview of the macroscopic properties of porcelain tableware fired in a microwave furnace with six magnetrons (each with a nominal power of 900 W) operating at the frequency of 2.45 GHz. The dependence of firing temperature on physical properties such as shrinkage, water absorption, apparent porosity, bulk density, and impact resistance was analyzed. Emphasis is on the differences in the macroscopic properties of microwave and conventionally (gas and electric) fired porcelain. Batches were fired from room temperature up to above the optimum firing temperature (1380°C). Results show similar macroscopic properties for both firing methods, microwave heating required lower firing temperatures (between 1300°C and 1350°C), and shorter processing times (about 70 minutes). The main differences between microwave and electric firing methods occur in a temperature band of 300°C above the porcelain eutectic temperature (close to 1000°C).