z-logo
Premium
Microstructural and technological investigation of bone China reformulated with nepheline syenite and quartz addition
Author(s) -
Kabakci Elif,
Capoglu Ahmet
Publication year - 2019
Publication title -
international journal of applied ceramic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 57
eISSN - 1744-7402
pISSN - 1546-542X
DOI - 10.1111/ijac.13410
Subject(s) - materials science , flexural strength , microstructure , quartz , nepheline , mixing (physics) , crystallization , devitrification , viscosity , sintering , phase (matter) , nepheline syenite , composite material , mineralogy , chemical engineering , chemistry , physics , organic chemistry , quantum mechanics , engineering
In this study, bone china body was reformulated by completely replacing Cornish stone with nepheline syenite and quartz. Effect of controlled milling/mixing on the technological properties and microstructural evolution was also studied. Specimens prepared both from reformulated and controlled milled/mixed bodies were sintered between 1200 and 1250°C with 25°C increment. Sintering and technological properties of reformulated bodies were not being adversely affected but conversely, the measured flexural strength values (55 MPa) were half of the value that was published for bone china (100 MPa). Microstructural investigations showed that enlarged pore formation was the reason for strength reduction. However, improvement in particle packing by controlled milling/mixing eliminated enlarged pore formation and in response, flexural strength values increased to conventionally quoted levels. Detailed microstructural investigations revealed that the reason behind enlarged pore formation was heterogeneous distributions of body components, especially CaO and quartz grains. It was suggested that variations of CaO and SiO 2 to form improper ratio between them would affect the viscosity of glassy phase and crystallization, which would prevent gases in pores to dissolve away. The obtainment of homogenous distribution of body components by controlled milling/mixing has a strong influence on the evolution of microstructure and improvement of technological properties.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here