z-logo
Premium
Substrate and structure of ground nests have fitness consequences for an alpine songbird
Author(s) -
Zwaan Devin R.,
Martin Kathy
Publication year - 2018
Publication title -
ibis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.933
H-Index - 80
eISSN - 1474-919X
pISSN - 0019-1019
DOI - 10.1111/ibi.12582
Subject(s) - nest (protein structural motif) , microclimate , songbird , ecology , biology , seasonal breeder , nest box , substrate (aquarium) , population , predation , zoology , demography , biochemistry , sociology
Songbird nests are an important life‐history component with multiple functions, including the creation of a suitable microclimate for offspring development. Thus, functional nest characteristics may influence fitness correlates, such as nestling size traits, and may co‐vary with prevailing environmental conditions. We investigated among‐ and within‐female variation in nest substrate, lining and decoration structures with associated fitness consequences (hatching success, nestling size traits, nest survival) across two breeding seasons for an alpine population of Horned Lark Eremophila alpestris . We combined these observations with explicit measures of nest temperature to address the influence of nest characteristics on microclimate. Nests in heather substrate had the coldest microclimates compared with grass and bare‐ground substrate, but also the greatest nest survival rates (68% versus 37–44% in other substrates), indicating the potential for substrate use decisions to reflect a trade‐off between microclimate and nest survival in response to prevailing weather and predation risk conditions. Furthermore, nest lining and nest decoration patterns indicated some support for a thermoregulatory function. Nests that were lined with willow ( Salix sp.) seed‐down were associated with larger, heavier nestlings and the use of down lining decreased in frequency as the season warmed up. Nest decoration placed in front of the nest (e.g. stones or dirt clumps varying in mass from 5.3 to 186.6 g) was positively associated with warmer nest microclimates. Females demonstrated high phenotypic flexibility, as 61–94% of the observed variance in nest characteristics was explained by within‐female rather than among‐female differences. Such flexible nesting behaviour suggests the capacity to adjust to changing environmental conditions to maintain vital fitness correlates such as nest survival and nestling size development.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here