z-logo
Premium
Effects of experimental calcium availability, egg parameters and laying order on G reat T it P arus major eggshell pigmentation patterns
Author(s) -
Hargitai Rita,
Nagy Gergely,
Herényi Márton,
Török János
Publication year - 2013
Publication title -
ibis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.933
H-Index - 80
eISSN - 1474-919X
pISSN - 0019-1019
DOI - 10.1111/ibi.12054
Subject(s) - eggshell , parus , protoporphyrin , calcium , calcium supplementation , biology , pigment , zoology , ecology , chemistry , biochemistry , organic chemistry , porphyrin
Many bird species lay eggs speckled with protoporphyrin‐based spots, however, for most of them the function of eggshell spotting is unknown. A plausible hypothesis is that protoporphyrin might have a structural function in strengthening the eggshell and is therefore deposited when calcium is scarce. In this study, we experimentally provided Great Tit P arus major females with supplemental calcium to examine its effect on the protoporphyrin‐based maculation of their eggs. In addition, we studied variation in eggshell pigmentation patterns in relation to other egg parameters and laying order. Calcium‐supplemented females laid larger eggs but shell thickness was not significantly affected by the treatment. Calcium supplementation may reduce the time and energy females devote to searching for calcium‐rich material, so that they can collect more nutrients and so lay larger eggs. Furthermore, pigment darkness was associated with egg volume and shape, which suggests that female quality and environmental food availability may also influence the shell pigmentation pattern. Within clutches, later‐laid eggs had larger and darker spots that were distributed more unevenly on the shell surface. This within‐clutch pattern could be explained by the increase in egg volume and egg shape and a decline in shell thickness with egg‐laying order, which characteristics were all related to shell‐spotting pattern. Eggs with a coronal ring had thinner shells, but pigment intensity and spot size were not related to shell thickness. Thus, our results suggest that concentrated spotting distribution may have a mechanical function, supporting the structural‐function hypothesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here