Premium
The effects of hemodialysis treatment on the level of DNA strand breaks and oxidative DNA lesions measured by the comet assay
Author(s) -
Ersson Clara,
OdarCederlöf Ingegerd,
FehrmanEkholm Ingela,
Möller Lennart
Publication year - 2013
Publication title -
hemodialysis international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.658
H-Index - 47
eISSN - 1542-4758
pISSN - 1492-7535
DOI - 10.1111/hdi.12008
Subject(s) - hemodialysis , dialysis , oxidative stress , comet assay , medicine , dna damage , diabetes mellitus , dna , gastroenterology , endocrinology , biology , biochemistry
Hemodialysis patients have a higher risk for oxidative stress‐related complications, such as cardiovascular disease and cancer. The increased level of oxidative stress is due to several factors, e.g., the hemodialysis treatment itself and the uremic state. In the present study, the effects of dialysis treatment on the level of DNA breaks and oxidative DNA lesions in mononuclear cells were measured with the comet assay. Factors possibly affecting DNA damage (reported as % DNA in tail) such as the duration of dialysis, time since last dialysis session, years of dialysis treatment, nutritional status (measured as protein catabolic rate), age, and diabetes were also investigated. The levels of DNA breaks (13.6 ± 4.7 before dialysis) and oxidative DNA lesions (7.9 ± 4.8 before dialysis) were significantly higher in dialysis patients (n = 31) compared to the levels of DNA breaks (5.8 ± 1.1) and oxidative DNA lesions (3.4 ± 1.7) in 10 healthy controls (P < 0.001). A decrease of DNA breaks was observed after dialysis (P = 0.038), and the level of oxidative DNA lesions was higher when the time between two treatment sessions were 68 hours compared to 44 hours (P < 0.001). Older subjects had a higher level of DNA breaks (P = 0.003), a good nutritional status predicted a lower level of DNA breaks (P < 0.001), and the duration of the dialysis session was inversely correlated with oxidative DNA lesions (P = 0.014). Diabetes or years of dialysis treatment did not affect DNA damage. The observations in the present study suggest that accumulation of uremic toxins induce DNA damage. The hemodialysis treatment seems to change the DNA damage.