z-logo
Premium
Real‐Time Geoelectric Monitoring of Seepage into Sand and Clay Layer
Author(s) -
Lyu Chao,
Sun Qiang,
Zhang Weiqiang
Publication year - 2019
Publication title -
groundwater monitoring and remediation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 47
eISSN - 1745-6592
pISSN - 1069-3629
DOI - 10.1111/gwmr.12352
Subject(s) - infiltration (hvac) , electrical resistivity and conductivity , geology , groundwater , soil science , electrical resistivity tomography , geotechnical engineering , porosity , materials science , composite material , electrical engineering , engineering
The migration of groundwater in rock and soil can appear as abnormalities in geoelectric fields. It is therefore important to study the characteristics of seepage in porous media by measuring the geoelectric field signatures. In this study, a physical model with layers of sand and clay was constructed and an electrical resistivity meter was used to examine the changes in the geoelectric field parameters during the infiltration process. The results show that the infiltration could be detected based on the geoelectric signatures including temporal changes through the spontaneous potential, excitation currents, and apparent resistivity. Specifically, the spontaneous potential was reduced by 100 to 200 mV when the water reaches an electrode. During the second water injection in the experiment, the measured spontaneous potential of all the electrodes recovered to the previous extreme values that range from −200 to −550 mV, thus indicating a “memory” effect. With stepwise changes in the excitation current, it was possible to determine the seepage velocity in sand and clay layer. The apparent resistivity is reduced to less than 400 Ωm when the infiltration reaches the electrodes. These results indicate the potential for real‐time monitoring of water flow.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here