z-logo
Premium
Biofilm Detection in a Model Well‐Bore Environment Using Low‐Field NMR
Author(s) -
Kirkland Catherine M.,
Hiebert Randy,
Phillips Adrienne,
Grunewald Elliot,
Walsh David O.,
Seymour Joseph D.,
Codd Sarah L.
Publication year - 2015
Publication title -
groundwater monitoring and remediation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 47
eISSN - 1745-6592
pISSN - 1069-3629
DOI - 10.1111/gwmr.12117
Subject(s) - biofilm , biogeochemical cycle , environmental remediation , chemistry , environmental chemistry , bioreactor , bioremediation , contamination , chemical engineering , environmental science , geology , bacteria , ecology , organic chemistry , engineering , biology , paleontology
This research addresses the challenges of the lack of non‐invasive methods and poor spatiotemporal resolution associated with monitoring biogeochemical activity central to bioremediation of subsurface contaminants. Remediation efforts often include growth of biofilm to contain or degrade chemical contaminants, such as nitrates, hydrocarbons, heavy metals, and some chlorinated solvents. Previous research indicates that nuclear magnetic resonance ( NMR ) is sensitive to the biogeochemical processes of biofilm accumulation. The current research focuses on developing methods to use low‐cost NMR technology to support in situ monitoring of biofilm growth and geochemical remediation processes in the subsurface. Biofilm was grown in a lab‐scale radial flow bioreactor designed to model the near wellbore subsurface environment. The Vista Clara Javelin NMR logging device, a slim down‐the‐borehole probe, collected NMR measurements over the course of eight days while biofilm was cultivated in the sand‐packed reactor. Measured NMR mean log T 2 relaxation times decreased from approximately 710 to 389 ms, indicating that the pore environment and bulk fluid properties were changing due to biofilm growth. Destructive sampling employing drop plate microbial population analysis and scanning electron and stereoscopic microscopy confirmed biofilm formation. Our findings demonstrate that the NMR logging tool can detect small to moderate changes in T 2 distribution associated with environmentally relevant quantities of biofilm in quartz sand.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here