z-logo
Premium
Fiber Optic Measurements of Soil Moisture in a Waste Rock Pile
Author(s) -
Wu Robert,
Martin Vincent,
McKenzie Jeffrey M.,
Broda Stefan,
Bussière Bruno,
Selker John,
Aubertin Michel
Publication year - 2021
Publication title -
groundwater
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 94
eISSN - 1745-6584
pISSN - 0017-467X
DOI - 10.1111/gwat.13075
Subject(s) - pile , infiltration (hvac) , water content , environmental science , moisture , geotechnical engineering , groundwater recharge , geology , materials science , groundwater , composite material , aquifer
The design and construction of a waste rock pile influences water infiltration and may promote the production of contaminated mine drainage. The objective of this project is to evaluate the use of an active fiber optic distributed temperature sensing (aFO‐DTS) protocol to measure infiltration and soil moisture within a flow control layer capping an experimental waste rock pile. Five hundred meters of fiber optic cable were installed in a waste rock pile that is 70 m long, 10 m wide, and was covered with 0.60 m of fine compacted sand and 0.25 m of non‐reactive crushed waste rock. Volumetric water content was assessed by heating the fiber optic cable with 15‐min heat pulses at 15 W/m every 30 min. To test the aFO‐DTS system 14 mm of recharge was applied to the top surface of the waste rock pile over 4 h, simulating a major rain event. The average volumetric water content in the FCL increased from 0.10 to 0.24 over the duration of the test. The volumetric water content measured with aFO‐DTS in the FCL and waste rock was within ±0.06 and ±0.03, respectively, compared with values measured using 96 dielectric soil moisture probes over the same time period. Additional results illustrate how water can be confined within the FCL and monitored through an aFO‐DTS protocol serving as a practical means to measure soil moisture at an industrial capacity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here