z-logo
Premium
Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida
Author(s) -
Yi Quanghee,
Stewart Mark
Publication year - 2017
Publication title -
groundwater
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 94
eISSN - 1745-6584
pISSN - 0017-467X
DOI - 10.1111/gwat.12544
Subject(s) - groundwater recharge , groundwater , aquifer , groundwater flow , hydrology (agriculture) , ridge , geology , groundwater model , water quality , surface water , hydraulic conductivity , groundwater discharge , environmental science , soil science , ecology , geotechnical engineering , environmental engineering , soil water , paleontology , biology
The effects of surface water flow system changes caused by constructing water‐conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids ( TDS ) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre‐development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water‐conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water‐conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high‐recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here