z-logo
Premium
Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells
Author(s) -
Brownlow Joshua W.,
James Scott C.,
Yelderman Joe C.
Publication year - 2016
Publication title -
groundwater
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 94
eISSN - 1745-6584
pISSN - 0017-467X
DOI - 10.1111/gwat.12431
Subject(s) - hydraulic fracturing , geology , aquifer , petroleum engineering , groundwater , oil shale , unconventional oil , sedimentary rock , water well , groundwater flow , petrology , geotechnical engineering , geochemistry , paleontology
The association between hydrocarbon‐rich reservoirs and organic‐rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins—where large‐scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well—abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m 3 /d for hydraulic‐fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here