Premium
Using Sealed Wells to Measure Water Levels Beneath Streams and Floodplains
Author(s) -
Noorduijn Saskia L.,
Cook Peter G.,
Wood Cameron,
White Nick
Publication year - 2015
Publication title -
groundwater
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 94
eISSN - 1745-6584
pISSN - 0017-467X
DOI - 10.1111/gwat.12287
Subject(s) - floodplain , streams , aquifer , environmental science , hydrology (agriculture) , flood myth , water level , groundwater , geology , geotechnical engineering , computer science , geography , computer network , cartography , archaeology
The design of wells beneath streams and floodplains has often employed with tall standpipes to prevent incursion of surface water into the well during flood events. Here, an approach has been presented to minimise the infrastructure demands in these environments by sealing the well top (e.g., prevent water entering the well) and monitor the total pressure in the water column using an absolute (non‐vented) pressure transducer. The sealed well design was tested using a laboratory experiment where the total pressure responses were monitored in both an unsealed and sealed well, while the water level was varied. It is observed that, whether the well is sealed or not, the total pressure at a given depth in the aquifer will be equal to that within the well. This indicates that the sealed well design is a viable alternative to tall standpipes and also facilitates installation of wells beneath streams and floodplains.