Premium
In Situ Oxygen Isotope Determination in Serpentine Minerals by SIMS: Addressing Matrix Effects and Providing New Insights on Serpentinisation at Hole BA1B (Samail ophiolite, Oman)
Author(s) -
Scicchitano Maria Rosa,
Spicuzza Michael J.,
Ellison Eric T.,
Tuschel David,
Templeton Alexis S.,
Valley John W.
Publication year - 2021
Publication title -
geostandards and geoanalytical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.037
H-Index - 73
eISSN - 1751-908X
pISSN - 1639-4488
DOI - 10.1111/ggr.12359
Subject(s) - ophiolite , petrogenesis , isotopes of oxygen , in situ , isotope , analytical chemistry (journal) , chemistry , mineralogy , mass spectrometry , geology , geochemistry , environmental chemistry , tectonics , chromatography , paleontology , physics , organic chemistry , quantum mechanics , basalt
The ability to constrain the petrogenesis of multiple serpentine generations recorded at the microscale is crucial for estimating the extent and conditions of modern versus fossil serpentinisation in ophiolites. To address matrix bias effects during oxygen isotope analysis by SIMS, we present the first investigation analysing antigorite in the compositional range Mg# = 77.5–99.5 mole %, using a CAMECA IMS‐1280 secondary ion mass spectrometer. Spot‐to‐spot homogeneity is ≤ 0.5‰ (2 s ) for the new antigorite reference materials. The relative bias between antigorite reference materials with different Mg/Fe ratios is described by a second‐order polynomial, and a maximum difference in bias of ~ 1.8‰ was measured for Mg# ~ 78 to 100. We observed a bias up to ~ 1.0‰ between lizardite and antigorite attributed to their different crystal structures. Orientation effects up to ~ 1‰ were observed in chrysotile. The new analytical protocol allowed the identification of oxygen isotope zoning up to ~ 7‰ in serpentine minerals from two serpentinites recovered from an area of active serpentinisation in the Samail ophiolite. Thus, in situ analysis is capable of resolving isotopic heterogeneity that may directly reflect changes in the physical and chemical conditions of multiple serpentinisation events in the Samail ophiolite.