Premium
Multi‐scale integration of tree recruitment and range dynamics in a changing climate
Author(s) -
CopenhaverParry Paige E.,
Carroll Charles J. W.,
Martin Patrick H.,
Talluto Matthew V.
Publication year - 2020
Publication title -
global ecology and biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.164
H-Index - 152
eISSN - 1466-8238
pISSN - 1466-822X
DOI - 10.1111/geb.13012
Subject(s) - seedling , range (aeronautics) , climate change , ecology , species distribution , tree (set theory) , environmental science , adaptation (eye) , biology , habitat , mathematics , agronomy , mathematical analysis , materials science , composite material , neuroscience
Aim The rate and magnitude of climate‐induced tree range shifts may be influenced by range‐wide variation in recruitment, which acts as a bottleneck in tree range dynamics. Here, we compare range predictions made using standard species distribution models (SDMs) and an integrated metamodelling approach that assimilates data on adult occurrence, seedling recruitment dynamics, and seedling survival under both current and future climate, and evaluate the degree to which information provided by seedling data can improve predictions of range dynamics. Location The interior west region of the United States. Time period 1990–2015. Major taxa studied Five widespread conifer tree species. Methods We used a previously published metamodelling framework to combine information from SDMs of adult tree occurrence and sub‐models describing seedling recruitment dynamics and seedling survival into a single set of predictions for the probability of occurrence for each species. The integrated framework links sub‐models to a SDM to generate cohesive predictions that consider information and uncertainty contained in all datasets. We then compared predictions from the integrated model to SDM predictions. Results Integration of seedling information served primarily to improve characterization of model uncertainty, particularly in regions where recruitment may be limited by temperatures that exceed seedling tolerance. Integration constrained response curves very slightly across most climate gradients, particularly across temperature gradients. These differences were primarily attributable to the isolated effects of temperature on seedling survival and not to recruitment dynamics. Main conclusions Our results indicate that range‐wide variation in recruitment both now and in the future is most uncertain along the edges of occupied regions, which increases uncertainty in projections of future species occurrence along range margins. Overall, the broad‐scale climatic dependence of the regeneration niche appears weaker than that of the adult climatic niche, and this enhances uncertainty in predicting range‐wide responses of these species to climate change.