Premium
Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit‐colour evolution, biogeography and diversification
Author(s) -
Lu Lu,
Fritsch Peter W.,
Matzke Nicholas J.,
Wang Hong,
Kron Kathleen A.,
Li DeZhu,
Wiens John J.
Publication year - 2019
Publication title -
global ecology and biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.164
H-Index - 152
eISSN - 1466-8238
pISSN - 1466-822X
DOI - 10.1111/geb.12900
Subject(s) - biological dispersal , biology , biogeography , phylogenetic tree , ecology , taxon , latitude , diversification (marketing strategy) , clade , geography , demography , population , biochemistry , geodesy , marketing , sociology , gene , business
Aim Are different fruit colours related to large‐scale patterns of dispersal, distribution and diversification? Here, we investigate this question for the first time, using phylogenetic approaches in the tribe Gaultherieae (Ericaceae). We test relationships between fruit colour and (a) biogeographic dispersal, (b) elevational and latitudinal species distributions and (c) rates of diversification. Location Global. Time period Recent to 30 million years ago. Major taxa studied The plant tribe Gaultherieae in the family Ericaceae (blueberries and relatives). Methods We estimated a new time‐calibrated phylogeny for Gaultherieae. Data on fruit colours and geographic distributions for each species were compiled from published sources and field observations. Using phylogenetic methods, we estimated major dispersal events across the tree and the most likely fruit colour associated with each dispersal event, and tested whether dispersal between major biogeographic regions was equally likely for different fruit colours, and whether dispersal distances were larger for certain colours. We then tested the relationships between fruit colours and geographic variables (latitude, elevation) and diversification rates. Results Large‐scale dispersal events were significantly associated with red‐fruited lineages, even though red‐fruited species were relatively uncommon. Further, different fruit colours were associated with different elevations and latitudes (e.g. red at lower elevations, violet at lower latitudes, white at higher elevations). Violet colour was related to increased diversification rates, leading to more violet‐fruited species globally. Main conclusions Overall, we show that different fruit colours can significantly impact the large‐scale dispersal, distribution and diversification of plant clades. Furthermore, the interplay between biogeography and fruit‐colour evolution seems to generate “taxon cycles” in fruit colour that may drive variation in fruit colour over macroevolutionary time‐scales.