Premium
The Probabilistic Minisum Flow Interception Problem: Minimizing the Expected Travel Distance until Intercept under Probabilistic Interception
Author(s) -
Tanaka Kenichi,
Kurita Osamu
Publication year - 2020
Publication title -
geographical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.773
H-Index - 65
eISSN - 1538-4632
pISSN - 0016-7363
DOI - 10.1111/gean.12197
Subject(s) - interception , probabilistic logic , computer science , flow (mathematics) , flow network , statistical model , mathematical optimization , expected value , stadium , operations research , mathematics , statistics , artificial intelligence , ecology , geometry , biology
We develop a variant of the flow interception problem (FIP) in which it is more desirable for travelers to be intercepted as early as possible in their trips. In addition, we consider flows being intercepted probabilistically instead of the deterministic view of coverage assumed in the FIP literature. We call the proposed model the probabilistic minisum FIP (PMFIP); it involves minimizing the sum of the expected distance that each flow travels until intercepted at a facility among placed facilities. This extension allows us to evaluate the effect of facility location under any given value of the interception probability and to apply the model to a variety of situations. We apply the proposed model to an example network by assuming a hypothetical situation in which people gather at a stadium from various nodes on the network, and receive some goods or services on the way to the stadium. We analyze optimal solutions obtained by varying the number of facilities and interception probability. It is shown that the expected travel distance until intercept is greatly reduced by means of a few optimally located facilities under a moderate interception probability.