Premium
Geographic Data Science
Author(s) -
Singleton Alex,
ArribasBel Daniel
Publication year - 2021
Publication title -
geographical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.773
H-Index - 65
eISSN - 1538-4632
pISSN - 0016-7363
DOI - 10.1111/gean.12194
Subject(s) - big data , data science , context (archaeology) , order (exchange) , work (physics) , knowledge production , science and engineering , computer science , epistemology , sociology , engineering ethics , geography , knowledge management , engineering , data mining , mechanical engineering , philosophy , archaeology , finance , economics
It is widely acknowledged that the emergence of “Big Data” is having a profound and often controversial impact on the production of knowledge. In this context, Data Science has developed as an interdisciplinary approach that turns such “Big Data” into information. This article argues for the positive role that Geography can have on Data Science when being applied to spatially explicit problems; and inversely, makes the case that there is much that Geography and Geographical Analysis could learn from Data Science. We propose a deeper integration through an ambitious research agenda, including systems engineering, new methodological development, and work toward addressing some acute challenges around epistemology. We argue that such issues must be resolved in order to realize a Geographic Data Science, and that such goal would be a desirable one.