z-logo
open-access-imgOpen Access
Spatial distribution of usable biomass feedstock and technical bioenergy potential in China
Author(s) -
Nie Yaoyu,
Chang Shiyan,
Cai Wenjia,
Wang Can,
Fu Jingying,
Hui Jingxuan,
Yu Le,
Zhu Wanbin,
Huang Guorui,
Kumar Amit,
Guo Weichao,
Ding Qun
Publication year - 2020
Publication title -
gcb bioenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.378
H-Index - 63
eISSN - 1757-1707
pISSN - 1757-1693
DOI - 10.1111/gcbb.12651
Subject(s) - bioenergy , biofuel , biomass (ecology) , environmental science , energy crop , raw material , cellulosic ethanol , natural resource economics , environmental economics , business , agricultural engineering , waste management , engineering , ecology , economics , cellulose , chemical engineering , biology
Bioenergy will play an intimate and critical role in energy supply and carbon mitigation in the future. In recent years, “customizing the development of bioenergy to local conditions” and “prioritizing distributed utilization” have been the two key principles that have been released by the Chinese government to promote the national‐ and provincial‐level development of bioenergy. While many recognize the importance of bioenergy in achieving low‐carbon transition, little is known about the high‐resolution distribution of usable biomass feedstock and technical bioenergy potential in China, which brings about uncertainties and additional challenges for creating localized utilization plans. We propose a new assessment framework that integrates crop growth models, a land suitability assessment, and the geographic information systems to address these knowledge gaps. Distributions of 11 types of usable biomass feedstock and three kinds of technical bioenergy potential are mapped out through specific transformation technologies at 1 km resolution. At the national level, the final technical biogas potential is 1.91 EJ. The technical bioethanol potential (0.04–0.96 EJ) from the energy crop can supply 0.13–3.12 times the bioethanol demand for the consumption of E10 gasoline in 2015. The technical heat potential (1.06 EJ) can meet 20% of the demand for heating in all provinces (5.38 EJ). Most of the 2020 bioenergy goals can be achieved, excluding that for bioethanol, which will need to require more cellulosic ethanol from residues. At the provincial level, Henan and Inner Mongolia have the potential to develop clean heating alternatives via the substitution of agroforestry residues for coal. The results can provide a systematic analysis of the distribution of biomass feedstocks and technical bioenergy potential in China. With economic factors taken into consideration in further research, it can also support national and provincial governments in making bioenergy development plans in an effective and timely manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here