z-logo
open-access-imgOpen Access
Carbon sequestration and turnover in soil under the energy crop Miscanthus : repeated 13 C natural abundance approach and literature synthesis
Author(s) -
Zang Huadong,
Blagodatskaya Evgenia,
Wen Yuan,
Xu Xingliang,
Dyckmans Jens,
Kuzyakov Yakov
Publication year - 2018
Publication title -
gcb bioenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.378
H-Index - 63
eISSN - 1757-1707
pISSN - 1757-1693
DOI - 10.1111/gcbb.12485
Subject(s) - miscanthus , environmental science , agronomy , grassland , soil carbon , loam , energy crop , crop rotation , soil organic matter , carbon sequestration , bioenergy , crop , soil science , ecology , biology , biofuel , soil water , carbon dioxide
The stability and turnover of soil organic matter ( SOM ) are a very important but poorly understood part of carbon (C) cycling. Conversion of C 3 grassland to the C 4 energy crop Miscanthus provides an ideal opportunity to quantify medium‐term SOM dynamics without disturbance (e.g., plowing), due to the natural shift in the δ 13 C signature of soil C. For the first time, we used a repeated 13 C natural abundance approach to measure C turnover in a loamy Gleyic Cambisol after 9 and 21 years of Miscanthus cultivation. This is the longest C 3 –C 4 vegetation change study on C turnover in soil under energy crops. SOM stocks under Miscanthus and reference grassland were similar down to 1 m depth. However, both increased between 9 and 21 years from 105 to 140 mg C ha −1 ( P  <   0.05), indicating nonsteady state of SOM . This calls for caution when estimating SOM turnover based on a single sampling. The mean residence time ( MRT ) of old C (>9 years) increased with depth from 19 years (0–10 cm) to 30–152 years (10–50 cm), and remained stable below 50 cm. From 41 literature observations, the average SOM increase after conversion from cropland or grassland to Miscanthus was 6.4 and 0.4 mg C ha −1 , respectively. The MRT of total C in topsoil under Miscanthus remained stable at ~60 years, independent of plantation age, corroborating the idea that C dynamics are dominated by recycling processes rather than by C stabilization. In conclusion, growing Miscanthus on C‐poor arable soils caused immediate C sequestration because of higher C input and decreased SOM decomposition. However, after replacing grasslands with Miscanthus , SOM stocks remained stable and the MRT of old C 3 ‐C increased strongly with depth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here