z-logo
Premium
Soil nutrients increase long‐term soil carbon gains threefold on retired farmland
Author(s) -
Seabloom Eric W.,
Borer Elizabeth T.,
Hobbie Sarah E.,
MacDougall Andrew S.
Publication year - 2021
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.15778
Subject(s) - nutrient , environmental science , soil carbon , agronomy , soil water , soil science , ecology , biology
Abandoned agricultural lands often accumulate soil carbon (C) following depletion of soil C by cultivation. The potential for this recovery to provide significant C storage benefits depends on the rate of soil C accumulation, which, in turn, may depend on nutrient supply rates. We tracked soil C for almost four decades following intensive agricultural soil disturbance along an experimentally imposed gradient in nitrogen (N) added annually in combination with other macro‐ and micro‐nutrients. Soil %C accumulated over the course of the study in unfertilized control plots leading to a gain of 6.1 Mg C ha −1 in the top 20 cm of soil. Nutrient addition increased soil %C accumulation leading to a gain of 17.8 Mg C ha −1 in fertilized plots, nearly a threefold increase over the control plots. These results demonstrate that substantial increases in soil C in successional grasslands following agricultural abandonment occur over decadal timescales, and that C gain is increased by high supply rates of soil nutrients. In addition, soil %C continued to increase for decades under elevated nutrient supply, suggesting that short‐term nutrient addition experiments underestimate the effects of soil nutrients on soil C accumulation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom