z-logo
Premium
Full inversion tillage during pasture renewal to increase soil carbon storage: New Zealand as a case study
Author(s) -
LawrenceSmith Erin J.,
Curtin Denis,
Beare Mike H.,
McNally Sam R.,
Kelliher Frank M.,
Calvelo Pereira Roberto,
Hedley Mike J.
Publication year - 2021
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.15561
Subject(s) - pasture , subsoil , topsoil , environmental science , soil water , agronomy , grassland , tillage , soil carbon , soil science , biology
As soils under permanent pasture and grasslands have large topsoil carbon (C) stocks, the scope to sequester additional C may be limited. However, because C in pasture/grassland soils declines with depth, there may be potential to sequester additional C in the subsoil. Data from 247 continuous pasture sites in New Zealand (representing five major soil Orders and ~80% of the grassland area) showed that, on average, the 0.15–0.30 m layer contained 25–34 t ha −1 less C than the top 0.15 m. High‐production grazed pastures require periodic renewal (re‐seeding) every 7–14 years to maintain productivity. Our objective was to assess whether a one‐time pasture renewal, involving full inversion tillage (FIT) to a depth of 0.30 m, has potential to increase C storage by burying C‐rich topsoil and bringing low‐C subsoil to the surface where C inputs from pasture production are greatest. Data from the 247 pasture sites were used to model changes in C stocks following FIT pasture renewal by predicting (1) the C accumulation in the new 0–0.15 m layer and (2) the decomposition of buried‐C in the new 0.15–0.30 m layer. In the 20 years following FIT pasture renewal, soil C was predicted to increase by an average of 7.3–10.3 (Sedimentary soils) and 9.6–12.7 t C ha −1 (Allophanic soils), depending on the assumptions applied. Adoption of FIT for pasture renewal across all suitable soils (2.0–2.6 M ha) in New Zealand was predicted to sequester ~20–36 Mt C, sufficient to offset 9.6–17.5% of the country's cumulative greenhouse gas emissions from agriculture over 20 years at the current rate of emissions. Given that grasslands account for ~70% of global agricultural land, FIT renewal of pastures or grassland could offer a significant opportunity to sequester soil C and offset greenhouse gas emissions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom