Premium
Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change
Author(s) -
Trugman Anna T.,
Anderegg Leander D. L.,
Sperry John S.,
Wang Yujie,
Venturas Martin,
Anderegg William R. L.
Publication year - 2019
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.14814
Subject(s) - context (archaeology) , allometry , ecosystem , vegetation (pathology) , ecology , representation (politics) , computer science , environmental science , biology , medicine , paleontology , pathology , politics , political science , law
Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.