Premium
Global environmental changes impact soil hydraulic functions through biophysical feedbacks
Author(s) -
Robinson David A.,
Hopmans Jan W.,
Filipovic Vilim,
van der Ploeg Martine,
Lebron Inma,
Jones Scott B.,
Reinsch Sabine,
Jarvis Nick,
Tuller Markus
Publication year - 2019
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.14626
Subject(s) - environmental science , ecosystem , soil functions , environmental change , soil carbon , global change , climate change , water content , carbon cycle , soil science , hydrology (agriculture) , soil biodiversity , ecology , soil water , soil organic matter , geology , geotechnical engineering , biology
Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro‐fauna and the microbiome influence soil structure, and thus the soil hydraulic parameters and the soil water content signals we observe. Incorporating biological feedbacks into soil hydrological models is therefore important for understanding environmental change and its impacts on ecosystems. We anticipate that environmental change will accelerate and modify soil hydraulic function. Increasingly, we understand the vital role that soil moisture exerts on the carbon cycle and other environmental threats such as heatwaves, droughts and floods, wildfires, regional precipitation patterns, disease regulation and infrastructure stability, in addition to agricultural production. Biological feedbacks may result in changes to soil hydraulic function that could be irreversible, resulting in alternative stable states (ASS) of soil moisture. To explore this, we need models that consider all the major feedbacks between soil properties and soil‐plant‐faunal‐microbial‐atmospheric processes, which is something we currently do not have. Therefore, a new direction is required to incorporate a dynamic description of soil structure and hydraulic property evolution into soil‐plant‐atmosphere, or land surface, models that consider feedbacks from land use and climate drivers of change, so as to better model ecosystem dynamics.