Premium
Effects of climate and demography on reproductive phenology of a harvested marine fish population
Author(s) -
Rogers Lauren A.,
Dougherty Annette B.
Publication year - 2019
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.14483
Subject(s) - phenology , spawn (biology) , pollock , climate change , population , ecology , biology , geography , environmental science , fishery , demography , sociology
Abstract Shifts in phenology are a well‐documented ecological response to changes in climate, which may or may not be adaptive for a species depending on the climate sensitivity of other ecosystem processes. Furthermore, phenology may be affected by factors in addition to climate, which may accentuate or dampen climate‐driven phenological responses. In this study, we investigate how climate and population demographic structure jointly affect spawning phenology of a fish species of major commercial importance: walleye pollock ( Gadus chalcogrammus ). We use 32 years of data from ichthyoplankton surveys to reconstruct timing of pollock reproduction in the Gulf of Alaska and find that the mean date of spawning has varied by over 3 weeks throughout the last >3 decades. Climate clearly drives variation in spawn timing, with warmer temperatures leading to an earlier and more protracted spawning period, consistent with expectations of advanced spring phenology under warming. However, the effects of temperature were nonlinear, such that additional warming above a threshold value had no additional effect on phenology. Population demographics were equally as important as temperature: An older and more age‐diverse spawning stock tended to spawn earlier and over a longer duration than a younger stock. Our models suggest that demographic shifts associated with sustainable harvest rates could shift the mean spawning date 7 days later and shorten the spawning season by 9 days relative to an unfished population, independent of thermal conditions. Projections under climate change suggest that spawn timing will become more stable for walleye pollock in the future, but it is unknown what the consequences of this stabilization will be for the synchrony of first‐feeding larvae with production of zooplankton prey in spring. With ongoing warming in the world’s oceans, knowledge of the mechanisms underlying reproductive phenology can improve our ability to monitor and manage species under changing climate conditions.