z-logo
Premium
Nitrogen fertilization raises CO 2 efflux from inorganic carbon: A global assessment
Author(s) -
Zamanian Kazem,
Zarebanadkouki Mohsen,
Kuzyakov Yakov
Publication year - 2018
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.14148
Subject(s) - soil water , soil acidification , environmental chemistry , carbonate , nitrification , environmental science , soil ph , total inorganic carbon , nitrogen , chemistry , carbon dioxide , agronomy , soil science , biology , organic chemistry
Nitrogen (N) fertilization is an indispensable agricultural practice worldwide, serving the survival of half of the global population. Nitrogen transformation (e.g., nitrification) in soil as well as plant N uptake releases protons and increases soil acidification. Neutralizing this acidity in carbonate‐containing soils (7.49 × 10 9  ha; ca. 54% of the global land surface area) leads to a CO 2 release corresponding to 0.21 kg C per kg of applied N. We here for the first time raise this problem of acidification of carbonate‐containing soils and assess the global CO 2 release from pedogenic and geogenic carbonates in the upper 1 m soil depth. Based on a global N‐fertilization map and the distribution of soils containing CaCO 3 , we calculated the CO 2 amount released annually from the acidification of such soils to be 7.48 × 10 12  g C/year. This level of continuous CO 2 release will remain constant at least until soils are fertilized by N. Moreover, we estimated that about 273 × 10 12  g CO 2 ‐C are released annually in the same process of CaCO 3 neutralization but involving liming of acid soils. These two CO 2 sources correspond to 3% of global CO 2 emissions by fossil fuel combustion or 30% of CO 2 by land‐use changes. Importantly, the duration of CO 2 release after land‐use changes usually lasts only 1–3 decades before a new C equilibrium is reached in soil. In contrast, the CO 2 released by CaCO 3 acidification cannot reach equilibrium, as long as N fertilizer is applied until it becomes completely neutralized. As the CaCO 3 amounts in soils, if present, are nearly unlimited, their complete dissolution and CO 2 release will take centuries or even millennia. This emphasizes the necessity of preventing soil acidification in N‐fertilized soils as an effective strategy to inhibit millennia of CO 2 efflux to the atmosphere. Hence, N fertilization should be strictly calculated based on plant‐demand, and overfertilization should be avoided not only because N is a source of local and regional eutrophication, but also because of the continuous CO 2 release by global acidification.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom