z-logo
Premium
Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems
Author(s) -
Inoue Kentaro,
Berg David J.
Publication year - 2017
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.13369
Subject(s) - biological dispersal , ecology , population , range (aeronautics) , habitat , climate change , geography , environmental science , biology , materials science , demography , sociology , composite material
In the face of global climate change, organisms may respond to temperature increases by shifting their ranges poleward or to higher altitudes. However, the direction of range shifts in riverine systems is less clear. Because rivers are dendritic networks, there is only one dispersal route from any given location to another. Thus, range shifts are only possible if branches are connected by suitable habitat, and stream‐dwelling organisms can disperse through these branches. We used Cumberlandia monodonta (Bivalvia: Unionoida: Margaritiferidae) as a model species to investigate the effects of climate change on population connectivity because a majority of contemporary populations are panmictic. We combined ecological niche models ( ENM s) with population genetic simulations to investigate the effects of climate change on population connectivity and genetic diversity of C. monodonta . The ENM s were constructed using bioclimatic and landscape data to project shifts in suitable habitat under future climate scenarios. We then used forward‐time simulations to project potential changes in genetic diversity and population connectivity based on these range shifts. ENM results under current conditions indicated long stretches of highly suitable habitat in rivers where C. monodonta persists; populations in the upper Mississippi River remain connected by suitable habitat that does not impede gene flow. Future climate scenarios projected northward and headwater‐ward range contraction and drastic declines in habitat suitability for most extant populations throughout the Mississippi River Basin. Simulations indicated that climate change would greatly reduce genetic diversity and connectivity across populations. Results suggest that a single, large population of C. monodonta will become further fragmented into smaller populations, each of which will be isolated and begin to differentiate genetically. Because C. monodonta is a widely distributed species and purely aquatic, our results suggest that persistence and connectivity of stream‐dwelling organisms will be significantly altered in response to future climate change.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here