Premium
Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change
Author(s) -
Wyka Stephen A.,
Smith Cheryl,
Munck Isabel A.,
Rock Barrett N.,
Ziniti Beth L.,
Broders Kirk
Publication year - 2017
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.13359
Subject(s) - climate change , ecology , precipitation , geography , distribution (mathematics) , range (aeronautics) , species distribution , environmental science , biology , habitat , mathematical analysis , materials science , mathematics , meteorology , composite material
The defoliation of the eastern white pine ( Pinus strobus ) across the northeastern United States is an escalating concern threatening the ecological health of northern forests and economic vitality of the region's lumber industry. First documented in the spring of 2010 affecting 24 328 hectares in the state of Maine, white pine needle damage ( WPND ) has continued to spread and is now well established in all New England states. While causal agents of WPND are known, current research is lacking in both sampling distribution and the specific environmental factor(s) that affect the development and spread of this disease complex. This study aims to construct a more detailed distribution map of the four primary causal agents within the region, as well as utilize long‐term WPND monitoring plots and data collected from land‐based weather stations to develop a climatic model to predict the severity of defoliation events in the proceeding year. Sampling results showed a greater distribution of WPND than previously reported. WPND was generally found in forest stands that compromised >50% eastern white pine by basal area. No single species, nor a specific combination of species had a dominating presence in particular states or regions, thus supporting the disease complex theory that WPND is neither caused by an individual species nor by a specific combination of species. In addition, regional weather data confirmed the trend of increasing temperature and precipitation observed in this region with the previous year's May, June, and July rainfall being the best predictor of defoliation events in the following year. Climatic models were developed to aid land managers in predicting disease severity and accordingly adjust their management decisions. Our results clearly demonstrate the role changing climate patterns have on the health of eastern white pine in the northeastern United States.