Premium
Global environmental change effects on ecosystems: the importance of land‐use legacies
Author(s) -
Perring Michael P.,
De Frenne Pieter,
Baeten Lander,
Maes Sybryn L.,
Depauw Leen,
Blondeel Haben,
Carón María M.,
Verheyen Kris
Publication year - 2016
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.13146
Subject(s) - novel ecosystem , ecosystem , land use , context (archaeology) , environmental resource management , environmental change , climate change , ecology , ecosystem services , land use, land use change and forestry , alternative stable state , environmental science , biological dispersal , geography , biology , archaeology , population , demography , sociology
One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land‐use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land‐use legacies and multiple environmental changes. Implementing these tests in the context of a trait‐based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land‐use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions.