z-logo
Premium
Macro‐ and microclimatic interactions can drive variation in species' habitat associations
Author(s) -
Pateman Rachel M.,
Thomas Chris D.,
Hayward Scott A. L.,
Hill Jane K.
Publication year - 2016
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.13056
Subject(s) - woodland , habitat , ecology , microclimate , climate change , butterfly , range (aeronautics) , biology , geography , composite material , materials science
Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, P ararge aegeria , in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland‐dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro‐ and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here