Premium
Predicting the responsiveness of soil biodiversity to deforestation: a cross‐biome study
Author(s) -
Crowther Thomas W.,
Maynard Daniel S.,
Leff Jonathan W.,
Oldfield Emily E.,
McCulley Rebecca L.,
Fierer Noah,
Bradford Mark A.
Publication year - 2014
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.12565
Subject(s) - biodiversity , biome , edaphic , deforestation (computer science) , environmental science , ecosystem , ecology , soil texture , context (archaeology) , plant community , vegetation (pathology) , agroforestry , geography , ecological succession , biology , soil water , medicine , archaeology , pathology , computer science , programming language
The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single‐site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine‐textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated.